Faculty of Arts \& Sciences
Department of Computer Science
CMPS 257
Theory of Computation
Fall 2016-17
Thursday, Nov 10 ${ }^{\text {th }}, 2016$

Solution of Quiz 2

Problem 1 (20 Points)

Let $\Sigma=\{0,1, \#\}$, and consider the following language:

$$
A=\left\{0^{n} \# u:|u|=n, n \geq 0\right\} .
$$

a. (10) Show that A is context free by giving the state diagram of a $P D A$ that recognizes A, with as small a number of states as possible.

b. (10) Give a context free grammar that generates A, having as small a number of variable symbols as possible.

$$
S \rightarrow 0 S 0|0 S 1| \#
$$

Problem 2 (20 Points)

Let $\Sigma=\{0,1, \#\}$, and consider again the language $A=\left\{0^{n} \# u:|u|=n, n \geq 0\right\}$ of the previous problem. We have studied a Turing machine M whose state diagram is shown below, which decides $\left\{u \# u: u \in\{0,1\}^{*}\right\}$. In this diagram, we use the convention that "absent arrows" lead to the q_{reject} (which is not shown as well.)

a. (5) Let δ denote the transition function of this Tm. Then each arrow (together with its label) represent a transition rule; e.g. the arrow from q_{2} to q_{4} with label $\# \rightarrow \mathrm{R}$ represents the rule $\delta\left(q_{2}, \#\right)=\left(q_{4}, \#, R\right)$. Complete the following:

$$
\delta\left(q_{4}, x\right)=\left(q_{4}, x, \mathrm{R}\right)
$$

$\delta\left(q_{4},\llcorner)=\left(q_{\text {reject }},\llcorner, \mathrm{R})\right.\right.$
(Note: in the above, $\left\llcorner\perp, \mathrm{R}\right.$ are arbitrary! Important thing is to get to $q_{\text {reject }}$)
The purpose of the rule $\delta\left(q_{4},\llcorner)\right.$ is to reject strings of the form: $u \# v$ where v is a proper prefix of u. i.e. $u=v z$, where $z \neq \varepsilon$
b. Motivated by the above, make (minimal) adjustments to construct a Turing machine T that decides the language A.
i. (6) Give a "high level description" of the changes that you want to make

Two main changes:

- Since we only have 0 's before the $\#$, then q_{3} and q_{5} are not needed anymore, and exclude 1 from the transition rule at q_{2}
- Matching a 0 before the \# with a 0 after the \# should become matching a 0 before the \# with a 0 OR a 1 after the \# (The length of u should be equal to the number of 0 's before the \#)
ii. (10) Give the state diagram of your machine T

Problem 3 (30 Points)

Let $\Sigma=\{0,1\}$. Consider the context free grammar (CFG) $G(V, \Sigma, R, S)$, whose rules are:

$$
\begin{aligned}
& S \rightarrow S S \mid T \\
& T \rightarrow 0 T|1 S| 01
\end{aligned}
$$

a. (3) According to the Pumping Theorem, the pumping length $p=8$. Why ?
$p=b^{|V|+1}$, where $b=\max \{|u| ; A \rightarrow u$ is a rule of $G\}=\max \{2,1,2,2,2\}=2$, and $|V|=|\{S, T\}|=2$ So $p=2^{2+1}=2^{3}=8$.
b. (4) Suggest a minimal height for a parse tree that will guarantee the repetition of one of the variables on a path from the root to a leaf node.

It should be $|V|+1=2+1=3$.
Consider the string $s=01101 . s \in L$. and a parse tree for it is :

c. (5) Clearly, repetition of T occurs on the path $\langle S, S, T, S, T, 0\rangle$. Based on this repetition, and as in the proof of the Pumping Theorem, we should get a subdivision of s into 5 substrings, $s=u v x y z$, such that $u \nu^{i} x y^{i} z \in L$, for all $i=0,1,2, \ldots$ What are these 5 substrings?

$$
u=01, v=1, x=01, y=\varepsilon, z=\varepsilon
$$

d. (3) Suggest another decomposition of s into 5 substrings that allows for pumping, this time based on the repetition of the symbol S at the root, and in between the two nodes labeled by T.

$$
u=\varepsilon, v=011, x=x=01, y=\varepsilon, z=\varepsilon
$$

e. (5) Give the leftmost derivation that corresponds to the parse tree above.

$$
S \Rightarrow S S \Rightarrow S T \Rightarrow 01 S \Rightarrow 01 T \Rightarrow 011 S \Rightarrow 011 T \Rightarrow 01101
$$

f. (4) The number of interior nodes of the parse tree shown above, and the number of steps in the derivation in $€$ must be the same. Why?

Starting with S
each interior node of the parse tree labeled with a A and whose children constitute u where $A \rightarrow u$ corresponds to
a step in the derivation in which the leftmost symbol A was replaced by u and vice-versa.

Thus the number of interior nodes $=$ the number of steps in the leftmost derivation
g. (6) Using the string s show that the grammar is ambiguous.

We give a second left most derivation of s, and thus s is ambiguously derived, so G is ambiguous:
$S \Rightarrow T \Rightarrow 0 T \Rightarrow 01 S \Rightarrow 01 T \Rightarrow 011 S \Rightarrow 011 T \Rightarrow 01101$

Page $\mid 2$

Problem 4 (15 Points)

Consider the PDA P whose state diagram is: P :

a. (4) What is $L(P)$, the language recognized by P ? Be very precise, and note that there is only one accept state..

$$
A=\left\{0^{n} 1^{n}: n \geq 1\right\} . \quad(\varepsilon \text { is not accepted!!) }
$$

b. (2) In Theorem 2.12 we have proved that if a language is recognized by a PDA then it is a context free language, by constructing a CFG $G(V, \Sigma, R, S)$. To facilitate the construction, three assumptions were made:
i. $\quad P$ has exactly one accept state
ii. $\quad P$ accepts a string with an empty stack
iii. Every transition rule of P is either a push or a pop operation

Does the PDA above satisfy these assumptions?
Yes all assumptions are valid
c. (3)What is the purpose of assumption (i) in the development of the proof?

Assumption i is to simplify the choice of the start symbol from among the variable symbols:
$S=A_{s f}$, where s is the start state of the PDA and f is the accept state (there is only one accept state!!)
d. (6) The construction will yield the grammar $G(V, \Sigma, R, S)$ with the following:
$V=\left\{A_{11}, A_{12}, A_{13}, A_{14}, A_{21}, A_{22}, A_{23}, A_{24}, A_{31}, A_{32}, A_{33}, A_{34}, A_{41}, A_{42}, A_{43}, A_{44}\right\} \quad S=A_{14}$
The generic diagram below has 3 instances, as in the table.:

The rules to be added (3 of them) appear in the last column, with the details as "to how"are in the previous columns.
In addition, there is a rule $A_{22} \rightarrow \varepsilon$. So the grammar essentially has the following 4 rules:
$A_{14} \rightarrow A_{23}$
$A_{23} \rightarrow 0 A_{22} 1$
$A_{23} \rightarrow 0 A_{23} 1$
$A_{22} \rightarrow \varepsilon$.

Page | 3

Problem 5 (15 Points)

Let $\Sigma=\{0,1\}$, and consider the language $D=\left\{0^{k} \mid k=n^{2}, n>0\right\}$, i.e. the number of 0 is a perfect square i.e. $k=0,1,4,9,16, \ldots$.
a. (4) Show that any infinite context free language L must have a sequence of strings whose length form an arithmetic progression of the form $a+i d, i=0,1,2, \ldots$. Where $0<d \leq p, p$ being the pumping length.
Let p be the pumping length for L. Since L is infinite, there must be a string s in L such that $|s|>p$. The pumping Lemma applies to s. So there must be a decomposition $s=u v x y z$ such that $u v^{i} x y^{i} z$ is in L for all $i=0,1,2,3, \ldots$ and $|v y|>0$, and $|v x y| \leq p$. Let $a=|u x z|$ and $d=|v y|$. Then $0<d \leq p$, and the sequence of strings $s_{0}, s_{1}, s_{2}, \ldots, s_{i}, \ldots$ where $s_{i}=u v^{i} x y^{i} z, i=0,1,2,3, \ldots$ will be a sequence of strings in L whose lengths are $a, a+d, a+2 d, \ldots . a+i d, \ldots$ which is an arithmetic progression as required.
b. (4) Using (a) argue that D cannot be context free

If D is a context free language, and being infinite, then it must contain a sequence of strings whose lengths form an arithmetic progression. But this cannot happen, because the string in D must have lengths that are perfect squares. The sequence of perfect squares is $1,4,9,16, \ldots$ where the gap between the successive squares n^{2} and $(n+1)^{2}$ is $2 n$ which depends on n and keeps growing!! So we cannot fit in it a sequence which forms an arithmetic progression.
c. (7) Be more precise, and argue using the pumping lemma that D is not context free.
(Hint: What is the next perfect square that comes after p^{2} ?)
Assume D is context free and let p be the pumping length. Let $s=0^{k}$ where $k=p^{2} .|s|=p^{2}>p$. So by the pumping lemma there must be a decomposition of $s=u v x y z$ such that the three conditions hold. Now pumping with $i=2, u v^{2} x y^{2} z=0^{k+d}$, where $d=|v y|$. But $|v x y| \leq p$, so $d=|v y| \leq|v x y| \leq p$, and $|v y|>0$ since not both v and y are empty. So $0<d \leq p . k+d=p^{2}+d \leq p^{2}+p<p^{2}+p+p+1=$ $(p+1)^{2}$. So $k+d=p^{2}+d$ cannot be a perfect square being "sandwiched" between two successive perfect squares: $p^{2}<p^{2}+d<(p+1)^{2}$. Thus $u v^{2} x y^{2} z=0^{k+d} \notin D$. Contradiction!!

Problem 6 (10 Points)

Let $\Sigma=\{0,1\}$, and consider the language $D=\left\{0^{k} \mid k=n^{2}, n>0\right\}$, i.e. the number of 0 's is a perfect square i.e. $k=0,1,4,9,16, \ldots$.

Give a high level description of a Turing machine that decides D.
Hint: You may want to use the Turing machine M that decides $C=\left\{a^{i} b^{j} c^{k} \mid i \times j=k\right.$, and $\left.i, j, k \geq 1\right\}$ repeatedly!!
$T=$ "On input 0^{k},

1. If the input is ε or 0 then accept. $\{k=0$, or $k=1\}$
2. Let $m=\lfloor k / 2\rfloor$
3. Transform the input to become $0^{m-1} a b c^{k}$,
4. If there are no 0 's left, then reject
5. Cross off a 0 from the left.
6. Increment the a 's and increment the b 's each by 1 .
7. Reposition the head at the first a.
8. Run M. If M accepts, then accept
9. Restore the a 's, b 's and c 's and go to step 4."

How can we get $k / 2$: Cross off every other $0!$!

